Помогите решить уравнение: log4(2x-1)*log4(x)=2log4(2x-1)

0 голосов
89 просмотров

Помогите решить уравнение:
log4(2x-1)*log4(x)=2log4(2x-1)


Алгебра | 89 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Log₄(2x-1)*log₄x=2*log₄(2x-1)
ОДЗ: 2x-1>0  x>1/2   x>0   ⇒  x∈(1/2;+∞)
2*log₄(2x-1)-log₄(2x-1)*log₄x=0
log₄(2x-1)*(2-log₄x)=0
log₄(2x-1)=0
2x-1=4⁰
2x=1
x₁=1/2 ∉ОДЗ.
2-log₄x=0
log₄x=2
x=4²
x₂=16 ∈ОДЗ.
Ответ: х=16.

(255k баллов)
0

эм, как у вас получилось : log₄(2x-1)*(2-log₄x)=0?? Можно по подробней расписать ...

0

Перемножьте log₄(2x-1)*(2-log₄x) и получите 2*log₄(2x-1)-log₄(2x-1)*log₄x