Медиана BM и биссектриса AP треугольника АВС пересекаются в точке К, длина стороны АС...

0 голосов
101 просмотров
Медиана BM и биссектриса AP треугольника АВС пересекаются в точке К, длина стороны АС втрое больше длины стороны АВ. Найдите отношение площади треугольника АКМ к площади четырехугольника КСРМ и рисунок если можно

Геометрия (38 баллов) | 101 просмотров
Дан 1 ответ
0 голосов

S(amb)=S(bmc) => S(amb = 1/2 S(abc)
Ak - медиана треугольника AMB, так как BK=KM
S(abk)=S(amk)=1/2 S(abm) = 1/4 S(abc)
Проведем ML параллельно AP
ML - средняя линия ACP (так как ML параллельна AP и AM=MC) =>PL=LC
KP - средняя линия BMP=>PL=PB
PL=LC; PL=PB =>PL=LC=PB
S(bkp)/ S(mbc)= 1/2* sinB * BK* BP/1/2* sinB * BM*BC ( при этом мы знаем, что BK=1/2 BM и BP = 1/3 BC)=> S(bkp)/ S(mbc)=1/6
S(bkp)/ S(mbc)=1/6 => S(cmkp)/ S(mbc)=5/6 => S(cmkp)/ S(abc) = 5/12
S(mbc)/S(cmkp) = 1/4 S(abc)/ 5/12S(abc)= 3/5

(14 баллов)