ответ \frac{sin^{2}x}{\frac{cosx}{sinx}+\frac{sinx}{sinx}}+\frac{cos^{2}x}{\frac{sinx}{cosx}+\frac{cosx}{cosx}}=\frac{sinx^{3}x}{cosx+sinx} + \frac{cos^{3}x}{sinx+cosx} = \frac{sin^{3}x + cos^{3}x}{sinx + cosx}=\frac{(sinx+cosx)(sin^{2}x - sinxcosx + cos^{2}x)}{sinx+cosx}=1-\frac{1}{2}sin2x; y'= -\frac{1}{2}cos2x*2=-cos2x