![image](https://tex.z-dn.net/?f=x%3D7%3A%5C%3B+%5C%3B+2%5Csqrt%7B7-3%7D%3D2%5Csqrt4%3D2%5Ccdot+2%3D4%5C%5C%5C%5C1%2B%5Csqrt%7B7%2B2%7D%3D1%2B%5Csqrt9%3D1%2B3%3D4%5C%3B+%2C%5C%3B+%5C%3B+%5C%3B+4%3D4%5C%5C%5C%5COtvet%3A%5C%3B+%5C%3B+x%3D7%5C%3B+.%5C%5C%5C%5C105.9%29%5C%3B+%5C%3B+%5Csqrt%7Bx-4%7D%3D%5Csqrt%7Bx-3%7D-%5Csqrt%7B2x-1%7D%5C%3B+%2C%5C%3B+%5C%3B+ODZ%3A%5C%3B++%5Cleft+%5C%7B+%7B%7Bx-4+%5Cgeq+0%7D+%5Catop+%7Bx-3+%5Cgeq+0%2C%5C%3B+2x-1+%5Cgeq+0%7D%7D+%5Cright.+%5C%3B+%2C%5C%3B+x+%5Cgeq+4%5C%5C%5C%5Cx-4%3D%28x-3%29-2%5Csqrt%7B%28x-3%29%282x-1%29%7D%2B%282x-1%29%5C%5C%5C%5C2%5Csqrt%7B2x%5E2-7x%2B3%7D%3D2x%5C%3B+%7C%3A2%5C%3B+%2C%5C%3B+%5C%3B+%5C%3B+%5C%3B+%5Csqrt%7B2x%5E2-7x%2B3%7D%3Dx%5C%5C%5C%5C2x%5E2-7x%2B3%3Dx%5E2%5C%3B+%5C%3B+%2C%5C%3B+%5C%3B+x%5E2-7x%2B3%3D0%5C%5C%5C%5CD%3D49-12%3D37%5C%3B+%2C%5C%5C%5C%5Cx_1%3D%5Cfrac%7B7-%5Csqrt%7B37%7D%7D%7B4%7D%5Capprox+0%2C46%5C+%5Ctextless+%5C+4%5C%3B+%5C%3B+%5Cto+%5C%3B+%5C%3B+postoronnij%5C%3B+koren%5C%5C%5C%5Cx_2%3D%5Cfrac%7B7%2B%5Csqrt%7B37%7D%7D%7B4%7D%5Capprox+6%2C54%3E4%5C%3B+%5C%3B+-%5C%3B+otvet)
4\; \; -\; otvet" alt="x=7:\; \; 2\sqrt{7-3}=2\sqrt4=2\cdot 2=4\\\\1+\sqrt{7+2}=1+\sqrt9=1+3=4\; ,\; \; \; 4=4\\\\Otvet:\; \; x=7\; .\\\\105.9)\; \; \sqrt{x-4}=\sqrt{x-3}-\sqrt{2x-1}\; ,\; \; ODZ:\; \left \{ {{x-4 \geq 0} \atop {x-3 \geq 0,\; 2x-1 \geq 0}} \right. \; ,\; x \geq 4\\\\x-4=(x-3)-2\sqrt{(x-3)(2x-1)}+(2x-1)\\\\2\sqrt{2x^2-7x+3}=2x\; |:2\; ,\; \; \; \; \sqrt{2x^2-7x+3}=x\\\\2x^2-7x+3=x^2\; \; ,\; \; x^2-7x+3=0\\\\D=49-12=37\; ,\\\\x_1=\frac{7-\sqrt{37}}{4}\approx 0,46\ \textless \ 4\; \; \to \; \; postoronnij\; koren\\\\x_2=\frac{7+\sqrt{37}}{4}\approx 6,54>4\; \; -\; otvet" align="absmiddle" class="latex-formula">
P.S. Во всех примерах сделайте проверку, как в №105.8.