Парабола задана следующим уравнением : y = (x+a)² + 1. Известно,что прямая,задаваемая...

0 голосов
69 просмотров

Парабола задана следующим уравнением : y = (x+a)² + 1. Известно,что прямая,задаваемая уравнением y = 4 + 2x является касательной к ней .
найти a


Алгебра (22 баллов) | 69 просмотров
0

Не пропущено ли в задании: " уравнением : y = (x+a)² + "??? Стоит +, а после него ничего нет.

0

+1

Дан 1 ответ
0 голосов
Правильный ответ

Дано уравнение параболы y = (x+a)² + 1 и касательной у = 2х + 4.
Коэффициент перед х касательной равен производной функции y'.
y = (x+a)² + 1 = х² +2ах + (а² + 1).
y' = 2x + 2a.
Приравняем: 2x + 2a = 2  или x + a = 1. Отсюда  а = 1 - х.
Подставим в уравнение параболы и находим координаты точки касания.
у = (х + 1 - х)² + 1 = 1 + 1 = 2.
Это значение подставим в уравнение касательной: 2 = 2х + 4,
2х = 2 - 4 = -2,
х = -2/2 = -1.
Теперь находим параметр а = 1 - (-1) = 1 + 1 = 2.

(309k баллов)