Площадь основания правильной четырехугольной пирамиды 36 см, а площадь её полной...

0 голосов
34 просмотров

Площадь основания правильной четырехугольной пирамиды 36 см, а площадь её полной поверхности 96 см. Найдите высоту пирамиды.


Геометрия (1.4k баллов) | 34 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

• ABCD – это основание четырехугольника;
• M – вершина;
• MО – высота пирамиды (где О –
это точка пересечения диагоналей);
• МN – высота боковой грани.

Sосн = а² = 36 (где а – это сторона основания)

а = √36 = 6 (см)
Sполн = Sосн + Sбок = 96 (см)
Sбок = Sпол + Sосн
Sбок = 96 - 36=60 (см²)
Sбок = 1 : 2 * Р * L (где Р – это периметр основания, а L – высота боковой грани)
Росн = 4 * 6 = 24
S = 1: 2* 24 * L = 60
12 * L = 60
L= 60 : 12
L = 5

Используя прямоугольный треугольник МОN (где угол О = 90°) по теореме Пифагора найдём, что:

КО = Н
ОМ = 1 :2
а = 3 (см)
КМ = L = 5
КО² = КМ² - ОМ²
КО² = 5² - 3² = 25 - 9 = 16
КО = √16 = 4
Н = 4 (см)

Ответ: 4 см.

(6.6k баллов)