Если m и n делятся на 31, то 11m+xn делится на 31 при любом x, минимальный натуральный x - это 1. Если m или n не делится на 31, то и второе из этих чисел не делится на 31, так как иначе 17m+6n не делилось бы на 31. Пусть m и n не делятся на 31 и значит взаимно просты с 31. Если 17m+6n≡0(mod 31) (то есть 17m+6n делится на 31) и 11m+xn≡0(mod 31) (в дальнейшем будем опускать (mod 31)), то
11(17m+6n)-17(11m+xn)≡0, (66-17x)n≡0, а так как n взаимно просто с 31,
66-17x≡0; 66-2·31-17x≡0; 17x-4≡0; 2(17x-4)≡0; 34x-8≡0; 34x-31x-8≡0;
3x-8≡0; угадываем x=13 (3·13-8=31 делится на 13); множество всех решений описывается формулой x=13+31p; минимальное натуральное из них - это x=13.
Проверим, что на самом деле x=13 подходит. В самом деле,
11(17m+6n)-17(11m+13n)=-155n=-31·5n делится на 31, а раз 17m+6n делится на 31, то и 11m+13n делится на 31
Ответ: x=13