График функции y= -x2 + bx + c пересекает ось у в пункте (0; 3). Наибольшее значении...

0 голосов
72 просмотров

График функции y= -x2 + bx + c пересекает ось у в пункте (0; 3). Наибольшее значении функции равно 7. Эта функция возрастает в интервале (-бесконечность; 2) и убывает в интервале (2; +бесконечность).

Нарисуй функцию, следуй всем указаниям. Назови значения b и c .


Алгебра (4.0k баллов) | 72 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Task/25855843
-------------------
График функции y= -x² + bx + c пересекает ось у в пункте (0; 3). Наибольшее значении функции равно 7. Эта функция возрастает в интервале (-бесконечность; 2) и убывает в интервале (2; +бесконечность). 
Нарисуй функцию, следуй всем указаниям. Назови значения b и c .
--------------
y(x) = - x² + bx + c ; 
y(0) =  -0² + b*0 + c  =3 ⇒ c=3
y(x) = - x² + bx + 3 = - (x - b/2)²+b²/4 +3
Координаты  вершина параболы  x₀ =  b/2 ; y₀ =b²/4 +3
Из условия "Наибольшее значении функции равно 7"  следует 
max(y) =y₀ =b²/4 +3 =7 ⇒ b =±4 , т.е. x₀ = b/2 =±2,а с помощью условия
"Эта функция возрастает в интервале (-∞; 2) и убывает в интервале
(2; +∞) уточняем  b/2 = 2 ⇒ b=4 .* * * Если исходим  из условии  "Эта функция возрастает в интервале (-∞; 2) и убывает в интервале (2; +)",
то сразу определим   b/2 = 2 и max(y)=y₀ =b²/4 +3 =4²/4 =3 =4+3 =7 совпадает с условием_не мешает) ; в этом случае условия "Наибольшее значении функции равно 7"_лишнее * * * 

y = - x²+ 4x +3 
График этой функции пересекает ось в точках  (2 -√7 ; 0) и  (2+√7 ; 0)
* * * 2 -√7 и 2 -√7  корни уравнения - x²+ 4x +3 =0⇔x²- 4x - 3 =0 * * * 

(181k баллов)
0

спасибо большое, можете еще вот это сделать пожалуйста? https://znanija.com/task/25855806