Двугранный угол при основании правильной четырехугольной пирамиды равен α. Высота...

0 голосов
316 просмотров

Двугранный угол при основании правильной четырехугольной пирамиды равен α. Высота пирамиды равна H. Найдите объем конуса, вписанного а пирамиду.


Геометрия (15 баллов) | 316 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

высота конуса совпадает с высотой пирамиды. радиус основания конуса отметим за у, а образующая  = х (так как двугранный угол равен а, т.е угол между образющей и основанием) по прямоугольному треугольнику в сечении конуса найдем: sin A= H/X

x = H/sinA, a cosA = y/x = у/H/sinA = у = ctgA*H

V = s осн * H / 3

S осн = ПИ * R" = ПИ* у" = ПИ"*ctg"A*H"

V = (ctg"A)*(H")*(ПИ)*(H) / 3

(4.6k баллов)