127a)arcCos(-0,5) + arcSin(- 0,5) = 2π/3 - π/6 = 4π/6 - π/6 = 3π/6= π/2
б)arcCos(- √2/2) - arcSin(-1) = 3π/4 - π/2 = π/4
в) arcCos(- √3/2) + arcSin(- √3/2) = 5π/6 - π/3 = 3π/6 = π/2
г) arcCos√2/2 - arcSin√3/2 = π/4 - π/3 = 3π/12 - 4π/12 = - π/12
128a) arctg1 - arctg√3 = π/4 - π/3 = - π/12
б) arctg1 - arctg(- 1) = π/4 + π/4 = π/2
в) arctg(- √3) + arctg0 = - π/3 + 0 = - π/3
г) arctg1/√3 + arctg√3 = π/6 + π/3 = π/2
129a) arcSin(-1/2) < 0 arcCos √3/2 > 0
arcSin(- 1/2) < arcCos√3/2
б) arcCos(- 1/2) > 0 arctg(- 1) < 0
arcCos(- 1/2) > arctg(- 1)
в) arctg√3 = π /3 arcSin1 = π/2
arctg√3 < arcSin1
г) arcCos(- √3/2) = 5π/6 arcSin1/2 = π/6
arcCos(- √3/2) > arcSin1/2