![image](https://tex.z-dn.net/?f=1%29%282x+-+y%29%282x+%2B+y%29+%5Cgeqslant+1+%5C%5C+2x+-+y+%5Cgeqslant+1+%5C%5C+2x+%5Cgeqslant+1+%2B+y+%5C%5C+x+%5Cgeqslant++%5Cfrac%7B1+%2B+y%7D%7B2%7D++%5C%5C+2x+%2B+y+%5Cgeqslant+1+%5C%5C+2x+%5Cgeqslant+1+-+y+%5C%5C+x+%5Cgeqslant++%5Cfrac%7B1+-+y%7D%7B2%7D++%5C%5C+2%29+%7By%7D%5E%7B2%7D++%3E+7x+-+2+%5C%5C+y+1%3E++%5Csqrt%7B7x+-+2%7D++%5C%5C+y2+%3E++-++%5Csqrt%7B7x+-+2%7D++%5C%5C+3%29y+%3C+4+%7Bx%7D%5E%7B2%7D++-+3+%5C%5C+y+%3C+%282x+-++%5Csqrt%7B3%7D+%29%282x+%2B++%5Csqrt%7B3%7D+%29)
7x - 2 \\ y 1> \sqrt{7x - 2} \\ y2 > - \sqrt{7x - 2} \\ 3)y < 4 {x}^{2} - 3 \\ y < (2x - \sqrt{3} )(2x + \sqrt{3} )" alt="1)(2x - y)(2x + y) \geqslant 1 \\ 2x - y \geqslant 1 \\ 2x \geqslant 1 + y \\ x \geqslant \frac{1 + y}{2} \\ 2x + y \geqslant 1 \\ 2x \geqslant 1 - y \\ x \geqslant \frac{1 - y}{2} \\ 2) {y}^{2} > 7x - 2 \\ y 1> \sqrt{7x - 2} \\ y2 > - \sqrt{7x - 2} \\ 3)y < 4 {x}^{2} - 3 \\ y < (2x - \sqrt{3} )(2x + \sqrt{3} )" align="absmiddle" class="latex-formula">