Пожалуйста!!!напишите решение.......Найти общие интегралы уравнений и частные решения...

0 голосов
28 просмотров

Пожалуйста!!!напишите решение.......
Найти общие интегралы уравнений и частные решения дифференциальных уравнений, удовлетворяющие начальным условиям:


image

Математика (102 баллов) | 28 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
x^3y'=y\\\frac{dyx^3}{dx}=y|*\frac{dx}{x^3y}\\\frac{dy}{y}=\frac{dx}{x^3}\\\int \frac{dy}{y}=\int\frac{dx}{x^3}\\ln|y|=-\frac{1}{2x^2}+C\\ln|y|+\frac{1}{2x^2}=C\\y(0)=4\\ln|4|=C\\ln|y|+\frac{1}{2x^2}=ln|4|\\ln|y|+\frac{1}{2x^2}-ln|4|=0\\ln|\frac{y}{4}|+\frac{1}{2x^2}=0
Проверка:
(ln|\frac{y}{4}|+\frac{1}{2x^2})'=0'\\\frac{1}{4}\frac{4}{y}y'-2\frac{1}{2}*\frac{1}{x^3}=0\\\frac{y'}{y}-\frac{1}{x^3}=0\\\frac{y'}{y}=\frac{1}{x^3}|*x^3y\\x^3y'=y

x^4y'+y^2=0\\\frac{x^4dy}{dx}=-y^2|*\frac{dx}{x^4y^2}\\\frac{dy}{y^2}=-\frac{dx}{x^4}\\\int\frac{dy}{y^2}=-\int\frac{dx}{x^4}\\-\frac{1}{y}=\frac{1}{3x^3}+C\\\frac{1}{y}+\frac{1}{3x^3}=C\\y(-3)=1\\1-\frac{1}{81}=C\\C=\frac{80}{81}\\\frac{1}{y}+\frac{1}{3x^3}=\frac{80}{81}
Проверка:
(\frac{1}{y}+\frac{1}{3x^3})'=\frac{80}{81}'\\-\frac{y'}{y^2}-\frac{1}{x^4}=0|*-x^4y^2\\x^4y'+y^2=0
(73.4k баллов)