Вычислить определенный интеграл с точностью до 0,001, разложив подынтегральную функцию в...

0 голосов
123 просмотров

Вычислить определенный интеграл с точностью до 0,001, разложив подынтегральную функцию в ряд и затем проинтегрировав его почленно


image

Математика (170 баллов) | 123 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Решите задачу:

e^{-x^2/4}=1- \frac{x^2}{4}+ \frac{x^4}{32}-\frac{x^6}{384}+\frac{x^8}{6144}+o(x^9)

\displaystyle \int\limits^{0.5}_0 {e^{-x^2/4}} \, dx =\int\limits^{0.5}_0 {\bigg(1- \frac{x^2}{4}+ \frac{x^4}{32}-\frac{x^6}{384}+\frac{x^8}{6144} \bigg)} \, dx =\\ \\ \\ =\bigg(x- \frac{x^3}{12}+ \frac{x^5}{5\cdot 32}- \frac{x^7}{7\cdot 384}+ \frac{x^9}{9\cdot 6144} \bigg)\bigg|^{0.5}_0\approx0.49