Тест 6. Равнобедренного треугольник. Медина, биссектриса, высота треугольника

0 голосов
371 просмотров

Тест 6. Равнобедренного треугольник. Медина, биссектриса, высота треугольника


Алгебра (47 баллов) | 371 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
Дано: А АВС — равнобедренный треугольник, АВ — основание, CD — медиана.
Доказать: CD — биссектриса и высота.
Доказательство. Треугольники CAD и CBD равны но второму признаку равенства треугольников (стороны АС и ВС равны, так как АВС — равнобедренный. Углы CAD и CBD равны как углы при основании равнобедренного треугольника. Стороны AD и BD равны, поскольку D — середина отрезка АВ) .
Из равенства треугольников CBD и CAD следует равенство углов:

Так как углы ACD и BCD равны, то CD — биссектриса. Поскольку углы ADC и BDC смежные и равны друг другу, они прямые. Следовательно, отрезок CD является также высотой треугольника АВС. Теорема доказана.
Таким образом, установлено, что биссектриса, медиана и высота равнобедренного треугольника, проведенные к основанию, совпадают. Поэтому справедливы также следующие утверждения:
1. Биссектриса равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
2. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.

(52 баллов)