В доме имеется однокомнатные двухкомнатные трехкомнатные квартиры причём двухкомнатных...

0 голосов
178 просмотров

В доме имеется однокомнатные двухкомнатные трехкомнатные квартиры причём двухкомнатных квартир в двое больше чем однокомнатных и на 12 больше чем трехкомнатных Определите число квартир каждого вида если известно что всего в доме 108 квартир


Алгебра (12 баллов) | 178 просмотров
Дано ответов: 2
0 голосов

Пусть х - двухкомнатных, тогда х/2 - однокомнатных и (х-12) - трехкомнатных.
Всего 108 квартир
х+х/2+(х-12)=108
2,5х=108+12
2,5х=120
х=48 - двухкомнатных
48/2=24 - однокомнатных
48-12=36 - трехкомнатных

0

у друг друга списали шо ли?

0 голосов

Пусть х - двухкомнатных, тогда х/2 - однокомнатных и (х-12) - трехкомнатных.
Всего 108 квартир
х+х/2+(х-12)=108
2,5х=108+12
2,5х=120
х=48 - двухкомнатных
48/2=24 - однокомнатных
48-12=36 - трехкомнатных

(66 баллов)
0

вы откуда списали у обоих одинаковы