(n+3)! = (n+1)!(n+2)(n+3)
a) ((n+2)(n+3) - n² - 5n)/(n+3)! = (n² + 5n + 6 - n² - 5n)/(n+3)! = 6/(n+3)!
б) (n+1)! = n!(n+1)
((n+1)(n+2) - 3n - 2)/(n+1)! = (n² + 3n + 2 - 3n - 2)/(n+1)! = n²/(n+1)!
в) (k+1)! = (k-1)!k(k+1)
(k² + k - k)/(k+1)! = k²/(k+1)!
г) (k+1)! = (k-2)!(k-1)k(k+1) = (k-2)!(k³ - k)
(k³ - k - k³ - k)/(k+1)! = -2k/(k+1)!