Какое наибольшее количество различных натуральных чисел можно сложить так чтобы при...

0 голосов
31 просмотров

Какое наибольшее количество различных натуральных чисел можно сложить так чтобы при сложении не было ни одного переноса а сумма была ровна 2038


Алгебра (32 баллов) | 31 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Понятно, что цифра сотен в каждом слагаемом равна 0.
Т.к. нет переносов, то сумма всех цифр во всех слагаемых должна равняться 2+0+3+8=13. Чтобы количество слагаемых было максимальным, сумма цифр в каждом слагаемом должна быть минимальной. Возможны только три слагаемых с суммой цифр 1: 1000, 0010, 0001 (будем писать старшие нули, чтобы легче было на это смотреть). Также, всего имеется 6 возможных различных слагаемых с суммой цифр 2: 2000, 0020, 0002, 1010, 1001, 0011. Значит, что бы получить сумму всех цифр 13 и иметь максимальное число слагаемых, нужно взять 3 слагаемых с суммой цифр равной 1 в каждом слагаемом, и 5 слагаемых с суммой цифр равной 2. Таким образом, ясно, что количество слагаемых не превосходит 3+5=8.

Покажем, что 8 слагаемых нельзя сделать. Предположим, что можно. Тогда, как уже было сказано, обязательно должны быть слагаемые
1000
0010
0001
Т.к. итоговая цифра тысяч равна 2, то еще должно быть только одно слагаемое с цифрой тысяч равной 1, т.е. должно быть одно слагаемое вида 1010 или 1001 (у них сумма цифр уже 2). Все остальные слагаемые должны иметь 0 в разряде тысяч (а также сотен) и сумму цифр 2, поэтому для них остается только 3 варианта: 0020, 0002, 0011. Но это всего дает 3+1+3=7 слагаемых.Т.е. обязано быть слагаемое с суммой цифр больше 2. Но тогда слагаемых не 8 штук, а меньше.

Представить 2038 в виде 7 слагаемых без переносов можно:
1000
0010
0001
1001
0020
0002
0004
------
2038
Итак, ответ: 7 чисел.

(56.6k баллов)