При каких значении а система решений не имеет?
Решение
Очевидно, что система не имеет решения при а = -1/2 = -0,5
На координатной плоскости с осями Х и У два данных уравнения
представляют собой две прямые. Пересечение этих прямых и является решением данной системы уравнений.
Поэтому для того, чтобы решений не было необходимо, что бы прямые были параллельны и не совпадали.
Из условию параллельности прямых их угловые коэффициенты(коэффициент k- прямой заданной уравнением y=kx+c) прямых должны быть равными(k₁=k₂)
Угловой коэффициент первой прямой равен k₁ = 2.
2x-y = 5
у = 2х - 5
Угловой коэффициент второй прямой равен k₂ =-1/a
х + ау = 7
ay =-x+7
y = -x/a +7/a
Тогда
k₁ = k₂
-1/а = 2
а=-1/2=-0,5
Решим задачу аналитически
Выразим из первого уравнения х и подставим во второе уравнение
2x - y = 5
х = y/2 + 2,5
х + ау = 7
y/2 + 2,5 + ay = 7
y(0,5 + a) = 4,5
у = 4,5/(0,5+а)
Понятно, что уравнение и система уравнений не имеет решений при
значении знаменателя равного нулю
0,5 + а = 0
а =-0,5
Ответ: а=-0,5