В параллелограмме ABCD ** сторонах AD и ВС взяты точки К w Е соответственно так, что LKBE...

0 голосов
167 просмотров

В параллелограмме ABCD на сторонах AD и ВС взяты точки К w Е соответственно так, что LKBE = 90° и отрезок ЕК проходит через точку О пересечения диагоналей. Докажите, что ВО = ОЕ.


Геометрия (145 баллов) | 167 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

KB⊥BC, AD||BC => KB⊥AD, ∠BKD=90
BO=OD (диагонали параллелограмма точкой пересечения делятся пополам)
KO=OD (медиана, проведенная из вершины прямого угла, равна половине гипотенузы)

∠BEK=∠EKD, ∠EBD=∠BDK (накрест лежащие углы при AD||BC)
△BOE~△KOD (по двум углам)
BO/OD=OE/KO => BO=OE.

ИЛИ
Средняя линия параллелограмма (и лежащая на ней точка пересечения диагоналей) делит всякий отрезок, соединяющий противоположные стороны, пополам (по теореме Фалеса). Диагонали четырехугольника BEDK делятся точкой пересечения пополам => BEDK - параллелограмм. В параллелограмме BEDK угол KBE - прямой => BEDK - прямоугольник. Диагонали прямоугольника равны => равны их половины, BO=OE.


image
(18.3k баллов)