Данное равенство верно только тогда, когда a = b
√ab > 2ab/(a + b)
Возводим в квадрат
ab > 4a²b²/(a² + 2ab + b²)
Т.к. a > 0, b > 0, то по свойству пропорции:
ab(a² + 2ab + b²) > 4a²b²
a³b + 2a²b² + ab² > 4a²b²
a³b + 2a²b² + ab³ > 0
ab(a² + 2ab + b²) > 0
ab(a + b)² > 0
Равенство верно, т.к. a > 0, b > 0, (a + b)² > 0.
Значит, √ab > 2ab/(a + b)
Вообще √ab - среднее геометрическое двух чисел.
2ab/(a + b) - среднее гармоническое двух чисел.