Обозначим треугольник DEF (DE = EF). Пусть C — точка касания с основанием.
Длиной боковой стороны может быть только 8 (иначе не будет выполняться неравенство треугольника) . Основание, значит, 4.
Поскольку C — середина DF, а касательные к окружности, проведённые из одной точки, равны, имеем:
AD = DC = CF = FB = 4/2 = 2.
Значит, AE = BE = 8 − 2 = 6. Треугольники AEB и DEF подобны с коэффициентом подобия AE/DE = 6/8 = 3/4. Поэтому AB = 3/4·DF = 3.
НЕ УВЕРЕНА!!!!