Log_0.008 (x^3+2)+log_5 (x+2)=0
ОДЗ {x³+2>0⇒x>-∛2 {x+2>0⇒x>-2 x∈(-∛2;∞) log(0,008)(x²+3)=log(5)(x³+2)/log(5)(1/125)=-1/3*log(5)(x²+2) log(5)(x+2)-log(5)∛(x²+2)=0 log(5)(x+2)=log(5)∛(x²+3) x+2=∛(x²+2) (x+2)³=x²+2 x³+6x²+12x+8-x³-2=0 6x²+12x+6=0 6(x²+2x+1)=0 6(x+1)²=0 x+1=0 x=-1