Решите срочно!!sin x+√3 cos x=2+3 cos²(2x+П\6)=

0 голосов
39 просмотров

Решите срочно!!
sin x+√3 cos x=2+3 cos²(2x+П\6)=


image

Алгебра (49 баллов) | 39 просмотров
0

sin x+√3 cos x=2+3 cos²(2x+pi/6)1/2*sinx+√3/2*cosx=cos(pi/6)sinx+sin(pi/6)cosx=cos(x-pi/6)cos(x-pi/6)=1+3/2*cos²(2x+pi\6) дальше как-то никак не придумаю)

Дан 1 ответ
0 голосов
Правильный ответ

Gerren начал, я продолжу
sin x + √3*cos x = 2 + 3cos^2(2x+pi/6)
1/2*sin x + √3/2*cos x = cos(pi/6)*sin x + sin(pi/6)*cos x = cos(x-pi/6)
cos(x-pi/6) = 1 + 3/2*cos²(2x+pi/6)
Функция косинуса принимает значения [-1; 1].
Это уравнение имеет корни только в одном случае:
{ cos(x - pi/6) = 1
{ cos(2x+pi/6) = 0
Оба уравнения - табличные.
{ x - pi/6 = 2pi*k
{ 2x + pi/6 = pi/2 + pi*n
Решаем
{ x = pi/6 + 2pi*k
{ x = pi/4 - pi/12 + pi/2*n = 3pi/12 - pi/12 + pi/2*n = pi/6 + pi/2*n
Вторые корни все входят в первые
Ответ: x = pi/6 + 2pi*k

(320k баллов)