** доске написано натуральное число N. Маша подсчитала произведение его цифр и получила...

0 голосов
58 просмотров

На доске написано натуральное число N. Маша подсчитала произведение его цифр и получила число M. Потом Маша подсчитала произведение цифр числа M и получила 1001. Докажите, что Маша ошиблась.


Математика (62 баллов) | 58 просмотров
Дан 1 ответ
0 голосов

1. 1001 делится на 13, хотя должно быть произведением цифр.
2. Пусть первое число [AB] = 10A + B, второе [CD]. Есть два варианта:
1) A + C = 14; B + D = 7
Тогда [BA] + [DC] = 10(B + D) + (A + C) = 84
2) A + C = 13; B + D = 17
Тогда [BA] + [DC] = 10 * 17 + 13 = 183
Легко привести пример, что оба случая выполняются.

(266 баллов)