В точках пересечения координаты удовлетворяют уравнения обоих функций.
y^2+6*y+2*x-1=0
2*x=1-y^2-6*y подставим во второе уравнение. 2*2*x+y-3=0
2*(1-y^2-6*y)+y-3=0
2-2*y^2-12*y+y-3=0
-2*y^2-11*y-1=0 (*(-1))
2*y^2+11*y+1=0 y1,2=(-11±√(11^2-4*2)/4=(-11±√113)/4
Рассмотрим второе уравнение и выразим у чегез х и подставим в первое уравнение у=3-4*х
(3-4*x)^2+6*(3-4*x)+2*х-1=0
9-24*x+16*x^2+18-24*x+2*х-1=0
16*x^2-46*x+26=0 (/2)
8*x^2-23*x+13=0 x1,2=(23±√(23^2-4*8*13))/16=
=(23±√113)/16
Определим соответствие координат, подставив значения во второе уравнение.
4*(23±√113)/16+(-11±√113)/4=3 (*4)
23±√113-11±√113=12 большая абцисса соответствует большей ординате.
Имеем координаты точек ((23+√113)/16; (-11-√113)/4);
((23-√113)/16; (-11+√113)/4)