Полностью и досконально расписать как сделали

0 голосов
34 просмотров
\lim_{n \to \infty} \frac{(n+1) ^{4}-(n-1) ^{4}}{(n+1) ^{3}+(n-1) ^{3}}
Полностью и досконально расписать как сделали

Алгебра (247 баллов) | 34 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
\lim_{n \to \infty} \frac{(n+1)^{4}-(n-1)^{4} }{(n+1)^{3}+(n+1)^{3}}
Неопределённость оо/оо. Чтобы раскрыть такую неопределённость обычно числитель и знаменатель делят на эн в максимальной степени. Для этого достаточно раскрыть скобки, привести подобные, найти эн в максимальной степени и разделить числитель и знаменатель на него.
Что мы и проделаем, но попутно будем делать упрощения, если получится. Для удобства сначала числитель преобразуем, потом знаменатель.

Числитель раскладываем по формуле разности квадратов. Причём два раза.
(n+1)^{4}-(n-1)^{4}=((n+1)^{2}-(n-1)^{2})*((n+1)^{2}+(n-1)^{2})=
=((n+1)-(n-1)) * ((n+1)+(n-1)) * ((n+1)^{2}+(n-1)^{2})=
=( n+1-n+1) * (n+1+n-1) * (n^{2}+2n+1+n^{2}-2n+1)=
=2 * 2n * (2n^{2}+2)=4n*2(n^{2}+1)=8n(n^{2}+1)

Знаменатель раскладываем по формуле суммы кубов
(n+1)^{3}+(n+1)^{3}=
=((n+1)+(n-1))*((n+1)^{2}-(n+1)(n-1)+(n-1)^{2})=
=2n*(n^{2}+2n+1-n^{2}+1+n^{2}-2n+1)=2n*(n^{2}+3)

Находим отношение числителя к знаменателю
\frac{8n(n^{2}+1)}{2n*(n^{2}+3)} = \frac{4(n^{2}+1)}{n^{2}+3}

Вот теперь переходим непосредственно к нахождению предела. Находим, что максимальная степень эн - это квадрат. Вот на эн в квадрате (n^{2}) и будем делить числитель и знаменатель
\lim_{n \to \infty} \frac{4(n^{2}+1)}{n^{2}+3}= \lim_{n \to \infty} \frac{4*(1+ \frac{1}{ n^{2}})}{1+ \frac{3}{n^{2}}}= \frac{4*(1+ \frac{1}{oo^{2}})}{1+ \frac{3}{oo^{2}}}= \frac{4(1+0)}{1+0} =4

При подстановке бесконечности получаем деление константы на бесконечность, что равно нулю.

(43.0k баллов)