Вариант 23. Дано: А(-10 ; 4), В(-5; 6), С(0 ;8). Найти: а) координаты вектора ВС; б)...

0 голосов
434 просмотров

Вариант 23. Дано: А(-10 ; 4), В(-5; 6), С(0 ;8). Найти: а) координаты вектора ВС; б) длину вектора АВ; в) координаты середины отрезка АС; г) периметр треугольника АВС; д) длину медианы ВМ. Самостоятельная работа по теме


Математика (14 баллов) | 434 просмотров
Дан 1 ответ
0 голосов

А) Составим уравнение стороны АВ в виде канонического уравнения прямой:
Вектор АВ (5-6=1, 5-1=4) = АВ (1,4)
Составляем каноническое уравнение прямой с направляющим вектором АВ проходящей через точку А:
(x - 6)/1 = (y - 1)/4
b) Уравнение высоты АH. Составим общее уравнение прямой АН, используя ортогональный вектор ВС.
Вектор ВС (2-5=-3, 10-5=5) = BC(-3, 5)
тогда уравнение прямой будет выглядеть так:
-3x + 5y + d = 0
чтобы найти постоянную d подставим в уравнение координаты точки А:
-3*6 + 5*1 + d = 0
-13 + d = 0
d = 13
Итого уравнение прямой AH:
-3x + 5y + 13 = 0
c) Уравнение медианы BM
найдем точку M - середину отрезка АС:
x = (6 + 2)/2 = 4
y = (1 + 10)/2 = 5.5
Итого М (4, 5.5)
Вектор ВМ ( 4-5=1, 5.5-5=0.5) = ВМ (1, 0.5)
Каноническое уравнение прямой ВМ:
(x - 5)/1 = (y - 5)/0.5
d) Точка пересечения АН и ВМ
Преобразуем уравнение ВМ к общему виду:
x - 5 = (y - 5)/1/2 = 2y - 10
x - 2y + 5 = 0
Далее решая систему:
-3x + 5y + 13 = 0
x - 2y + 5 = 0
получим координаты точки пересечения.
Умножим второе уравнение на 3 и прибавим к первому:
-3x + 3x + 5y - 6y + 13 + 15 = -y + 28 = 0
y = 28
Подставим у = 28 во второе уравнение:
x - 56 + 5 = 0
x = 51
Итого, точка пересечения медианы BM и высоты AH :
D( 51, 28)

(127 баллов)