Помогите, пожалуйста!!Даны координаты вершин треугольника. A(2;-1), B(3;0), C(-1;4). 1)...

0 голосов
28 просмотров

Помогите, пожалуйста!!
Даны координаты вершин треугольника. A(2;-1), B(3;0), C(-1;4).
1) составить уравнение сторон
2) уравнение высот
3) уравнение прямых, проходящих через вершину параллельных сторон
4) уравнение медиан


Математика (100 баллов) | 28 просмотров
Дан 1 ответ
0 голосов

Уравнение Сторон АВ = ( (x-2)/1= (y+1)/1 => y=x-3 ) BC = ( у=3-x ) AC = ( (x-2)/-3 = (y+1)/5 => у=(-5х+7)/3
Уравнение высот
Уравнение высоты через вершину B
Прямая, проходящая через точку N0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:


y = 3/5x - 9/5 или 5y -3x +9 = 0
Данное уравнение можно найти и другим способом. Для этого найдем угловой коэффициент k1 прямой AC.
Уравнение AC: y = -5/3x + 7/3, т.е. k1 = -5/3
Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k1*k = -1.
Подставляя вместо k1 угловой коэффициент данной прямой, получим :
-5/3k = -1, откуда k = 3/5
Так как перпендикуляр проходит через точку B(3,0) и имеет k = 3/5,то будем искать его уравнение в виде: y-y0 = k(x-x0).
Подставляя x0 = 3, k = 3/5, y0 = 0 получим:
y-0 = 3/5(x-3)
или
y = 3/5x - 9/5 или 5y -3x +9 = 0
Найдем точку пересечения с прямой AC:
Имеем систему из двух уравнений:
3y + 5x - 7 = 0
5y -3x +9 = 0
Из первого уравнения выражаем y и подставим во второе уравнение.
Получаем:
x = 31/17
y = -12/17
D(31/17;-12/17)

Уравнение Медиан
Для Стороны ВС:
Обозначим середину стороны BC буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам.


M(1;2)
Уравнение медианы AM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана AМ проходит через точки A(2;-1) и М(1;2), поэтому:
Каноническое уравнение прямой:

или

или
y = -3x + 5 или y + 3x - 5 = 0

Для стороны АВ:
Обозначим середину стороны AB буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам.


M(5/2;-1/2)
Уравнение медианы CM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана CМ проходит через точки C(-1;4) и М(5/2;-1/2), поэтому:
Каноническое уравнение прямой:

или

или
y = -9/7x + 19/7 или 7y + 9x - 19 = 0

Для стороны АС
Обозначим середину стороны AC буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам.


M(1/2;3/2)
Уравнение медианы BM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана BМ проходит через точки B(3;0) и М(1/2;3/2), поэтому:
Каноническое уравнение прямой:

или

или
y = -3/5x + 9/5 или 5y + 3x - 9 = 0


Длс СТороны ВС
Обозначим середину стороны BC буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам.


M(1;2)
Уравнение медианы AM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана AМ проходит через точки A(2;-1) и М(1;2), поэтому:
Каноническое уравнение прямой:

или

или
y = -3x + 5 или y + 3x - 5 = 0

(150 баллов)
0

спасибо большое

0

Не за что, что помню написал