Помогите решить и подробно всё расписать, буду очень благодарна

0 голосов
30 просмотров

Помогите решить и подробно всё расписать, буду очень благодарна


image

Математика (164 баллов) | 30 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
\frac{4^x-9*2^x+8}{log_{0,3}(x^2+4)} \ \textgreater \ 0

Решение
Рассмотрим знаменатель log₀,₃(x²+4)
x²+4≥4 для всех значений х∈R.
Следовательно log₀,₃(x²+4)<0 для всех значений х∈R.<br>Поэтому можно записать,что
4^x-9*2^x+8\ \textless \ 0
Заменим переменную y=2ˣ
y²-9y+8<0<br>Решим неравенство методом интервалов.
Разложим квадратный трехчлен на множители. Для этого найдем корни квадратного уравнения
y²-9y+8=0
D =9²-4*8=81-32=49
y₁=(9-7)/2=1; y₁=(9+7)/2=8
Следовательно можно записать
y²-9y+8 =(y-1)(y-8)
Запишем заново неравенство
(y-1)(y-8)<0<br>На числовой оси изобразим точки где левая часть неравенства меняет знаки, а также знаки неравенства полученные по методу подстановки. Например при у=3  (y-1)(y-8)=(3-1)(3-8)<0<br>    +      0       -       0      +
----------!--------------!-------------
            1                8
Следовательно неравенство имеет решение для всех y∈(1;8)
Найдем значение переменной х
При y=1  
2ˣ =1⇔x=0
При y=8  
2ˣ =8⇔x=3
Следовательно неравенство имеет решение для всех х∈(0;3)

Ответ:(0;3)
(11.0k баллов)