Математический анализ Граница lim x→5 (√(1+3x)−√(2x+6))/(x^2-5x)

0 голосов
32 просмотров

Математический анализ
Граница
lim x→5 (√(1+3x)−√(2x+6))/(x^2-5x)


Математика (64 баллов) | 32 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Lim x→5 (√(1+3x)−√(2x+6))/(x^2-5x)=
=lim x→5 [(√(1+3x)−√(2x+6))·(√(1+3x)+√(2x+6))]/[(x^2-5x)·(√(1+3x)+√(2x+6))]=
= lim x→5 ((1+3x)−(2x+6))/[x(x-5)·(√(1+3x)+√(2x+6))]=
=lim x→5  (-5+x)/[x(x-5)·(√(1+3x)+√(2x+6))]=
lim x→5  (-1)/[x·(√(1+3x)+√(2x+6))]=-1/(5·8)=-1/40

(80.5k баллов)
0 голосов

Lim x-5((1+3x)-(2x+6))/(x2-5x)

(52 баллов)