Найти значение производной в точке х0f(x)=2sinx/2+cos3x,x0=pu/2 - решение.

0 голосов
91 просмотров

Найти значение производной в точке х0
f(x)=2sinx/2+cos3x,x0=pu/2 - решение.


Алгебра (5.3k баллов) | 91 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

F(x) = 2sinx/(2 + cos3x)
u = sinx, v = 2 + cos3x
f'(x) = (u'v - v'u)/v² 
f'(x) = 2[(sinx)'(2 + cos3x) - (2 + cos3x)'sinx]/(2 + cos3x)² = 2[cosx(2 + cos3x) + 3sin3xsinx]/(2 + cos3x)²
f'(π/2) = 2[cos(π/2)·(2 + cos(3π/2)) + 3sin(3π/2)sin(π/2)]/(2 + cos(3π/2)² = 
2(0 - 3)/(2 + 0)² = -6/4 = -1,5
Ответ: f'(π/2) = -1,5 

(145k баллов)