Log5корень кубический из25+Log125 из5

0 голосов
71 просмотров

Log5корень кубический из25+Log125 из5


Алгебра (20 баллов) | 71 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Используем следующие свойства:

log_{a}x^c = c \cdot log_{a}x \\ \\ 
log_{a^p}b = \dfrac{1}{p} log_a{b} \\ \\ 
log_{a}a = 1

log_5 \sqrt[3]{25} + log_{125}5 = log_{5}5^{ \dfrac{2}{3}} + log_{5^ 3}5 = \dfrac{2}{3} log_5{5} + \dfrac{1}{3} log_5{5} = \\ \\ 
= \dfrac{2}{3} + \dfrac{1}{3} = 1

(145k баллов)
0 голосов

Решите задачу:

log_5 \sqrt[n]{25} +log_{125}5=log_5(5)^{2/3}+log_{125}(125)^{1/3}=2/3+1/3=1
(750k баллов)