Сделаем подстановку
sin(3x-2)=2tg[(3x-2)/2]/(1+tg²[(3x-2)/2])
cos(3x-2)=(1-tg²[(3x-2)/2]) /(1+tg²[(3x-2)/2])
Заменим tg[(3x-2)/2]=a
4a/(1+a²)+3(1-a²)/(1+a²)=√13
приведем к общему знаменателю
4a+3-3a²=√13+√13a²
получим квадратное уравнение
a²(√13+3)-4a+(√13-3)=0
D=16-4(√13-3)(√13+3)=16-4*(13-9)=16-4*4=16-16=0
a=4/2(√13+3)=2/(√13+3)=2(√13-3)/(√13-3)(√13+3)=2(√13-3)/(13-9)=
=2(√13-3)/4=(√13-3)/2
Значит tg[(3x-2)/2]=(√13-3)/2
(3x-2)/2=arctg(√13-3)/2+πk
3x-2=2arctg(√13-3)/2+πk
3x=2+2arctg(√13-3)/2+πk
x=2/3+2/3*arctg(√13-3)/2+πk/3,k∈z