Log(x^-1, (2x-1)/(x-1))<=-1<br>-log(x, (2x-1)/(x-1))<=-1<br>log(x, (2x-1)/(x-1))=>1
(2x-1)/(x-1)>0
x ∈ (-∞; 0.5) ∪ (1; +∞)
log(x, (2x-1)/(x-1))=>log(x, x)
x>1
(2x-1)/(x-1)=>x
(2x-1-x^2+x)/(x-1)=>0
(x^2-3x+1)/(x-1)<=0<br>((x-(3-sqrt(5))/2)(x-(3+sqrt(5))/2))/(x-1)<=0<br>
x ∈ (1; (3+sqrt(5))/2]
x<1<br>
(2x-1)/(x-1)<=x<br>(2x-1-x^2+x)/(x-1)<=0<br>(x^2-3x+1)/(x-1)=>0
((x-(3-sqrt(5))/2)(x-(3+sqrt(5))/2))/(x-1)=>0
x ∈ [(3-sqrt(5))/2; 0.5)
x ∈ [(3-sqrt(5))/2; 0.5) ∪ (1; (3+sqrt(5))/2]