Представим сечение конуса с шаром плоскостью перпендикулярной основанию и проходящей через высоту конуса. Сечение будет выглядеть как равнобедренный треугольник с вписанной окружностью, где бедра треугольника являются образующими, а центр коружности лежит в пересечении серединных перпендикуляров, один из которых является высотой конуса. Рассмотрим один треугольник образзованный высотой конуса и образующей ( бедром треугольника). По условию высота = 15, а образующая 25. Отсюда по теореме Пифагора основание такого треугольника = √(25²-15²)=20. А основание всего треугольника образованного сечением = 20*2=40. Используем формулу для радиуса вписанной в треугольник окружности r= ) где p полупериметр = (25+25+40):2=45 , а в и с стороны треугольника. подставляя значения в ф-лу получаем что радиус равен 6.(6)