Найдите производные следующей функции y = sin(cos^2(tg^3x))Пожалуйста с подробным...

0 голосов
143 просмотров

Найдите производные следующей функции
y = sin(cos^2(tg^3x))
Пожалуйста с подробным решением а то не понимаю как решать подобное


Алгебра (12 баллов) | 143 просмотров
Дан 1 ответ
0 голосов

Y=sin(cos^2(tg^3x)) 

у нас производная от сложной функции, этакая "матрешка" вложение функций - брать производную просто, идем слева направо.
1. встречается sinf , f=cos^2(tg^3x) имеем y'=cos(cos^2(tg^3x))*[cos^2(tg^3x)]'  самое главное - берем производную и умножаем на производную "внутренних функций."
2. квадрат косинуса  [cos^2(tg^3x)]' =[2cos(cos(tg^3x))]'
3. берем производную от косинуса [2cos(cos(tg^3x))]'=-2sin[(cos(tg^3x)]
    y'=cos(cos^2(tg^3x))*[2cos(cos(tg^3x))]*[-2sin[(cos(tg^3x)]*[(cos(tg^3x)]'
4. от косинуса
    y'=cos(cos^2(tg^3x))*[2cos(cos(tg^3x))]*[-2sin[(cos(tg^3x)]*-sin[(tg^3x)]'
5.   от tg³x  (tg^3x)'=3tg²x    tg'x=1/cos²x

y'=cos(cos^2(tg^3x))*[2cos(cos(tg^3x))]*[-2sin[(cos(tg^3x)]*[-sin[3tg²x]]*3tg²x
*1/cos²x

(187k баллов)
0

Спасибо вам большое))