Вопрос в картинках...

0 голосов
43 просмотров

Решите задачу:

x^{log_{3}^{3}x-3log_{3}x} = 81

Алгебра (9.2k баллов) | 43 просмотров
0

Сложное задание, 11 класс.

Дано ответов: 2
0 голосов
Правильный ответ

Ответ на этот снимке если непонятно напиши


image
(307 баллов)
0 голосов

Прологарифмируем по основанию 3
log_3x^{{log_3^2x-3log_3x}}=81
log_3^4x-3log_3^2=4
log_3x*(log_3^2x-3log_3x)=log_381
log_3^4x-3log_3^2x-4=0
log_3^2x=a
a²-3a-4=0
по теореме Виета  a1+a2=3 U a1*a2=-4
a1=-1⇒log_3^2x=-1 нет решения
a2=4⇒log_3x=4log_3x=-2log_3x=2
x=1/9 U x=9

(750k баллов)