Помогите решить логарифмическое уравнение подробно

0 голосов
32 просмотров

Помогите решить логарифмическое уравнение подробно


image

Математика (24 баллов) | 32 просмотров
0

последний логарифм уточнить бы...

0

Lg 16 по основанию x^2

Дан 1 ответ
0 голосов
Правильный ответ

Приведём все логарифмы к логарифмам с одним основанием. (формула: logₐx = logx/loga , а основание берём какое хочется)
Возьмём основание = х
Наше уравнение:
logₓ(x - 2)/logₓ(√x) - logₓ(x² - 4) + logₓ5 + logₓ16/logₓ(x²)  = 1
Учтём, что logₓ(√x) = 1/2;  logₓ(x²) = 2
Теперь наше уравнение имеет вид:
2logₓ(x - 2) -logₓ(x - 2) -logₓ(x + 2)  - logₓ5 +2logₓ2 = 1
logₓ(x - 2) - logₓ(x +2) + logₓ5 + logₓ4 = logₓx
logₓ(x - 2) - logₓ(x +2) + logₓ20 = logₓx
потенцируем:
20*(х-2)/(х+2) = х
20*(х -2) = х(х +2)
20х - 40 = х² +2х
х² -18х +40 = 0
х = 9 +-√41
А теперь надо  изучить ОДЗ
х -2> 0               x > 2
x + 2 > 0            x > -2
x > 0                  x > 0 
x ≠ 1                  x ≠ 1         ОДЗ: х > 2
Ответ: 9 + √41

(46.2k баллов)
0

А в первой строчке , где приводим к общему основанию , там разве не минус log 5 по основанию x ?

0

так перед самим логарифмом минус ещё стоит...