2.Упростите выражение 1/x^2 * 1/x^(-4) и найдите его значение при x = -3. 3.Упростите...

0 голосов
64 просмотров

2.Упростите выражение 1/x^2 * 1/x^(-4) и найдите его значение при x = -3. 3.Упростите выражение (1/x - 1/y) * xy/(y-x). 4.Выберите верное неравенство: √16 = 4; 2) √0,4 = 0,2; 3) 7 – √25 = 2; 4) √(〖(-15)〗^2 ) = 15 5.Решите уравнение x^2 – 4 = 0 6.Найти дискриминант квадратного уравнения 3x – x^2 + 10 = 0 7.Решите неравенство 3(x+1) ≤ x + 5
Решение на листочке надо чтобы было понятно))
Пожалуйста


Алгебра (22 баллов) | 64 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

2.
\frac{1}{ x^{2} } * \frac{1}{ x^{-4} }= \frac{x^{4}}{ x^{2} }= x^{2}

при  х= -3
(-3)²=9

(\frac{1}{x}- \frac{1}{y} )* \frac{xy}{y-x}= \frac{y-x}{xy}* \frac{xy}{y-x} =1

4.
верные:  
√16=4
7-√25=2
√(-15)²=15

5.
х²-4=0
х²=4
х=+-4

6.
3х-х²+10=0
х²-3х-10=0
D=3²+4*10=49=+-7²
х1=(3+7)/2=5
х2=(3-7)/2= - 2

7.
3х+3≤х+5
3х-х≤5-3
2х≤2
х≤1
(-∞;1]

(322k баллов)
0

Спасибо тебе большое

0

))

0

Сможешь еще решить?

0

Я в вк могу скинуть если надо

0

тут кидай. меня в вк нет.

0

как добавишь, напиши.

0

добавила