В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB=5 и диагональю BD=9....

0 голосов
176 просмотров

В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB=5 и диагональю BD=9. Все боковые рёбра пирамиды равны 5. На диагонали BD основания ABCD отмечена точка E, а на ребре AS - точка F так, что SF=BE=4.
а) Докажите, что плоскость CEFпараллельна ребру SB.
б) Плоскость CEF пересекает ребро SD в точке Q. Найдите расстояние от точки Q до плоскости ABC.


Геометрия (12 баллов) | 176 просмотров
0

Насчет квадрата погорячился, извиняюсь.

Дан 1 ответ
0 голосов

А). Высота пирамиды по Пифагору:
SO=√(SB²-BO²) = √(25-81/4) =√19/2.Рассмотрим треугольник ASO и
секущую FC в нем. По теореме Менелая имеем:(AF/FS)*(SK/KO)*(OC/CA)=1.
Подставим имеющиеся значения, приняв отрезок ОК за Х:
(1/4)*((√19/2-Х)/Х)*(1/2)=1. Отсюда Х=√19/18.
Заметим, что точка К - пересечение прямых FC и SO.
Итак, КО=√19/18. Тогда в треугольнике КЕО:
tg(В треугольнике OSD тангенс угла SDO:
tg(SDO)=SO/OD или tg(SDO)=(√19/2)/(9/2)=√19/9.
Итак, в треугольнике EQD углы QED и QDO при основании равны,
a Следовательно, треугольники ВSD и EQD подобны и EQ параллельна BS. Прямая EQ принадлежит плоскости CEF, значит плоскость CEFпараллельна ребру BS, что и требовалось доказать.
б). Треугольники ВSD и EQD подобны (доказано выше), поэтомуEQ/BS=DE/DB, отсюда EQ=BS*DE/DB или EQ=5*5/9=25/9.Тогда в равнобедренном треугольнике EQD высота QH=√(EQ²-(OD/2)²) или QH=√475/18=5√19/18 ≈ 1,2. 


image
(6.2k баллов)
0

Маленькая описка на рисунке. Должно быть: "по теореме Менелая (AF/FS)*(SK/KO)*(OC/CA)=1."