Y= x+1/x-1 - найти производную
У' = ((x+1)'*(x-1) - (x-1)'*(x+1))/(x-1)² y'=(1*(x-1)-1(x+1))/(x-1)² y'=(x-1-x-1)/(x-1)² y'=-2/(x-1)²
(U/V)'=(U'V-UV')/V^2 ?
d/dx[f(x)/g(x)] = g(x)d/dx[f(x)]-f(x)d/dx[g(x)] / g(x)^2 f(x) = x+1 g(x) = x-1 (x-1)d/dx[x+1] -(x+1)[x-1]/ (x-1)^2 x-1-(x+1) / (x-1)^2
- 2/(x-1)^2
Я вот так сделал