В прямоугольном треугольнике ABC (угол C=90) проведена высота CD так,что длина отрезка BD...

0 голосов
56 просмотров

В прямоугольном треугольнике ABC (угол C=90) проведена высота CD так,что длина отрезка BD на 4 см больше длины отрезка CD, AD=9. Найдите стороны треугольника ABC. В каком отношении CD делит площадь треугольника ABC?


Геометрия (26 баллов) | 56 просмотров
Дан 1 ответ
0 голосов

Треугольники ABC, ACD и CBD подобны между собой . Это непосредственно следует из второго признака подобия (равенство углов в этих треугольниках очевидно).

Прямоугольные треугольники - единственный вид треугольников, которые можно разрезать на два треугольника, подобных между собой и исходному треугольнику.

Обозначения этих трех треугольников в таком порядке следования вершин: ABC, ACD, CBD. Тем самым мы одновременно показываем и соответствие вершин. (Вершине A треугольника ABC соответствует также вершина A треугольника ACD и вершина C треугольника CBD и т. д.)

Треугольники ABC и CBD подобны. Значит:

AD/DC = DC/BD, то есть

DC2=AD*BD

DC2=9*16

DC=12 см

(18 баллов)