Точка Т принадлежит отрезку ВС прямоугольника ABCD. В четырех угольнике ATCD вписанна...

0 голосов
26 просмотров

Точка Т принадлежит отрезку ВС прямоугольника ABCD. В четырех угольнике ATCD вписанна окружность. Известно что расстоянме от центра окружности до середины до середины стороны АВ равна 6 см, а ВС = 10 см. Вычислите периметр трапеции
вершинами которой являються точки В, С центором окружности и серединой стороны АВ


Геометрия (19 баллов) | 26 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

К - середина АВ
О - центр вписанной окружности
1) заметим, что окружность касается CD в 1 точке (пусть Е)
Тогда КО+ОЕ=ВС (т.к. ВС||КО по условию, а значит ВСЕК - прямоугольник, где ВС=К
6+ОЕ=10
ОЕ=4
Радиус = 4 см
Также окружность касается с ТС только в 1 точке (Пусть F)
Тогда KBFO - прямоугольник, тогда ОF=KB
OF-радиус
4=OF=KB
Заметим, что BF=KO=6
Тогда FC=10-6=4
OF^2+FC^2=ОС^2
4^2+4^2=ОС^2
ОС= √32
Тогда периметр:
Р=BC+CO+ОК+КВ=10+√32+6+4=20+√32
Ответ: 20+√32

(316 баллов)