Площадь прямоугольника 108, а диагональ 15. Найти стороны прямоугольника

0 голосов
25 просмотров

Площадь прямоугольника 108, а диагональ 15. Найти стороны прямоугольника


Геометрия (12 баллов) | 25 просмотров
Дан 1 ответ
0 голосов

Пусть а - длина,а b- ширина, тогда имеем систему двух уравнений
a x b = 108    - по правилу площади прямоугольника
a2 + b2 =225 - по теореме Пифагора
Выражаем из первого a= b/108 и подставляем во второе. Имеем биквадратное уравнение  108(2)+ b(4)+108(2)=0 
Заменяем переменную. Говорим Пусть х=b(2), получаем обычное квадратное уравнение, решаем через дискриминант, находим корни.
D=50625-46656=3969=63(2)
х=144 и81. Возвращаемся к формуле х=b(2), находим b=12 и 9, отсюда а=9 и 12. Ответ стороны равны (9;12) и (12;9)

(18 баллов)
0

а можно по подробней?