4^х - 3*6^x + 9^x < 0

0 голосов
61 просмотров

4^х - 3*6^x + 9^x < 0


Математика (15 баллов) | 61 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

2^2x-3*2^x*3^x+3^2x<0/3^2x<br>(2/3)^2x-3(2/3)^x+1<0<br>(2/3)^x=a
a²-3a+1<0<br>D=9-4=5
a1=(3-√5)/2 U a2=(3+√5)/2
             +                       _                        +
--------------((3-√5)/2)---------((3+√5)/2)--------------
(3-√5)/2{(2/3)^x>(3-√5)/2⇒x{(2/3)^x<(3+√5)/2⇒x>log(2/3)[(3+√5)/2]
x∈(log(2/3)[(3+√5)/2];log(2/3)[(3-√5)/2])

(750k баллов)
0 голосов

4^х - 3*6^x + 9^x < 0
2^2х - 3*2^x*3^x + 3^2x < 0
делим на 9^x=3^2x оно положительно и не равно 0
(2/3)^2x -3*(2/3)^x + 1 < 0
(2/3)^x=t t>0
t^2 -3t + 1 <0<br>D=9-4=5
t12=(3+-√5)/2
метод интервалов
++++0+++ (3-√5)/2 ----------- (3+√5)/2 ++++++++++
t ∈ ( (3-√5)/2 (3+√5)/2)
поменялся знак уравнения основание меньше 1
(2/3)^x> (3-√5)/2
x(2/3)^x< (3+√5)/2
x>log (2/3) (3+√5)/2
x∈ (log (2/3) (3+√5)/2 log (2/3) (3-√5)/2 )

(316k баллов)