1
ОДЗ x>0
log(2)(1+log(9)x/log(9)(1/9)-log(9)x)<1<br>1-log(9)x-log(9)x<2<br>1-2<2log(9)x<br>log(9)x>-1/2
x>1/3
2
ОДЗ
{3x+4>0⇒3x>-4⇒x>-4/3
{3x+4≠1⇒3x≠-3≠x≠-1
{5x+3>0⇒5x>-3⇒x>-0,6
{5x+3≠1⇒5x≠-2⇒x≠-0,4
x∈(-0,6;-0,4) U (-0,4;∞)
log(3x+4)(5x+3)+1/log(3x+4)(5x+3)=2
log(3x+4)(5x+3)=a
a+1/a=2
a²-2a+1=0
(a-1)²=0
a-1=0
a=1
log(3x+4)(5x+3)=1
3x+4=5x+3
3x-5x=3-4
-2x=-1
x=0,5