Основанием пирамиды служит трапеция, боковые стороны которой равны 2 см и 4 см. Боковые...

0 голосов
114 просмотров

Основанием пирамиды служит трапеция, боковые стороны которой равны 2 см и 4 см. Боковые грани пирамиды равно наклонены к плоскости основания. Высота одной из боковых граней равна 5 см. Найди площадь боковой поверхности пирамиды. Ответ должен быть: 30 квадратных см.


Геометрия (39 баллов) | 114 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Площадь боковой поверхности пирамиды равна S=1/2*P*a. Где Р-периметр основания, а-апофема. бозначим пирамиду. АВСДS, S-вершина, АД-большее основание трапеции, ВС -меньшее. Высота пирамиды SК. Проведём перпендикуляры к сторонам трапеции из точки К. К АВ перпендикуляр КЕ, к ВС  КМ, к СД   КF, к АД KN. Соединим вершину пирамиды М с точками Е,M,F,N.  Полученные прямоугольные треугольники SКЕ, SKM,SKF,SKN равны. Поскольку их острые углы при основании равны по условию , и они имеют общий катет SK. Отсюда высоты боковых граней будут равны, то есть апофема а=5. Соединим вершины трапеции с точкой К. Треугольники КВЕ и КВМ  равны по катету(ЕК=КМ) и гипотенузе(ВК). Отсюда ЕВ=ВМ. Аналогично из равенства треугольников АКЕ и АКN получаем АЕ=AN. Отсюда (AN+BM)=АД=2. То же самое в треугольниках МКС, КСF, КДF, KДN. То есть( МС+NД)=СД=4. Тогда периметр основания пирамиды равен Р=2АВ+2СД=4+8=12. Отсюда площадь боковой поверхности пирамиды S=1/2*12*5=30.

(3.7k баллов)