1. y(4 + e^x)dy = (e^x)dx;
ydy = (e^x)dx/(4+e^x);
Переменные разделились, теперь интегрируем.
S ydy = S (e^x)dx/(4+ e^x);
(1/2)*y^2 = S d(e^x)/(4+e^x) = S d( 4+ e^x)/(4+e^x) =
= ln(4+e^x) + C;
(y^2)/2 = ln(4+e^x) + C,
y^2 = 2*ln(4+e^x) + C.
2. Сделаем замену переменного y/x = z = z(x);
y = z*x;
y' = z + x*z',
Правая же часть исходного дифура =
= [( x^2 + xy - 3y^2)/x^2]/[(x^2 - 4xy)/x^2] =
= ( 1 + (y/x) - 3*(y/x)^2 )/( 1 - 4*(y/x) ) =
= ( 1 + z - 3(z^2) )/(1 - 4z);
z + x*z' = ( 1+ z - 3z^2)/(1-4z);
x*z' = [(1 + z - 3z^2)/(1-4z)] - z = (1 + z - 3z^2 - z + 4z^2)/(1-4z) =
= ( 1 + z^2)/(1 - 4z),
x*dz/dx = (1+z^2)/(1-4z);
(1-4z)dz/(1+z^2) = dx/x;
Переменные разделились, теперь интегрируем
S(1-4z)dz/(1+z^2) = (S dz/(1+z^2) ) - (S 4zdz/(1+z^2) ) =
= arctg(z) - (S 2d(1+z^2)/(1+z^2)) + C =
= arctg(z) - 2*ln( 1 + z^2) + C = S dx/x = ln|x|,
arctg(z) + C = 2*ln(1 + z^2) + ln|x|,
arctg(z) + C = ln| x*(1+ z^2) |;
e^( arctg(z) + C ) = | x*( 1 + z^2) |
(e^C)*e^(arctg(z)) = | x*(1+ z^2) |,
(+/-)e^C = C1 не=0,
С1*e^(arctg(z)) = x*(1+z^2);
z = y/x;
C1*e^(arctg(y/x)) = x*(1+ (y/x)^2).