** стенах, площадью 70 м² каждая, размещают квадратное панно с экспозициями. Свободная...

0 голосов
24 просмотров

На стенах, площадью 70 м² каждая, размещают квадратное панно с экспозициями.
Свободная площадь стены определяет зависимостью:
S (n)=70-n²
где n- длинна стороны панно: n может принимать значения от 2 до 6 и является целым числом.
Какой может быть максимальная свободная площадь стены?


Алгебра (25 баллов) | 24 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Если в условии 2 меньше или равно n меньше или равно 6, то ответ 66

Функция S(n) монотонно убывает на [2;6]
Значит наибольшее значение принимает в левом конце отрезка.
n=2
S(2)=70-2^2=66

Если в условии 2 < n < 6, то ответ 61

Функция S(n) монотонно убывает на (2;6)
Значит наибольшее значение принимает в точке n=3

S(3)=70-3²=61

(414k баллов)