Найти сумму корней уравнения x^2-4/x/-a+3=0, приa>=3

0 голосов
41 просмотров

Найти сумму корней уравнения x^2-4/x/-a+3=0, приa>=3


Алгебра (83 баллов) | 41 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Если /x/ - это модуль, то вот решение.
1) При x < 0 будет |x| = -x
x^2 + 4x + (-a+3) = 0
D/4 = 4 - (-a+3) = a + 1
Если a >= 3, то D/4 >= 4 > 0 - у нас всегда есть 2 корня.
x1 = -2 - √(a+1) < 0 - подходит.
x2 = -2 + √(a+1) >= -2 + √4 = -2 + 2 = 0; то есть x2 >= 0 - не подходит.
При x < 0 есть только 1 корень x1 = -2 - √(a+1)

2) При x >= 0 будет |x| = x
x^2 - 4x + (-a+3) = 0
D/4 = 4 - (-a+3) = a + 1
Если a >= 3, то D/4 >= 4 > 0 - у нас всегда есть 2 корня.
x1 = 2 - √(a+1) <= 2 - √4 = 0, x1 <= 0 - подходит только при x1 = 0 (a = 4)<br>x2 = 2 + √(a+1) > 0 - подходит.

Получаем 3 корня: x1 = -2-√(a+1); x2 = 2+√(a+1); x3 = 0 при a = 4.
Сумма всех корней в любом случае x1 + x2 + x3 = 0.

(320k баллов)